Solid Solubility of CoSi₂ in β -FeSi₂

The thermal conductivity κ of FeSi₂-rich polycrystalline FeSi₂-CoSi₂ alloys was determined as a function of the CoSi₂ content by Ware and McNeill [1]. They found that CoSi₂ lowers the thermal conductivity according to the expected solid solution effect up to 6 mol % CoSi₂. The increase in κ above 6 mol % CoSi₂ was ascribed to a second phase which appears after exceeding the maximum solid solubility at 6 mol % CoSi₂. The minimum in κ has recently been confirmed [2]. In the present work we have checked the above interpretation by a direct determination of the solid solubility of $CoSi_2$ in β -FeSi₂. For this purpose specimens were prepared as described by Hesse [2]. The $\alpha \rightarrow \beta$ phase transformation was performed at 750° C in view of the transformation hysteresis [3, 4], and checked by X-ray diffraction. The length changes of the three orthorhombic axis of β -FeSi₂ were measured as described by Bucksch [5]. The results are plotted in fig. 1 against the CoSi₂ content of the alloy. A

Figure 1 Lattice constants in FeSi2-CoSi2 alloys.

marked increase in the length of the *a*-axis up to approximately 12 mol % CoSi_2 was observed. Above this value lines of cubic CoSi_2 containing small amounts of FeSi_2 appear in the X-ray patterns, indicating the solid solubility of FeSi_2 in CoSi_2 [6]. The observations mean that 12 mol % CoSi_2 are dissolved in β -FeSi₂ at 750° C. Consequently, the former explanation of the minimum in κ at 6 mol % CoSi_2 cannot be correct. This conclusion is supported by Hall effect measurements (fig. 2) indicating that up to 272

Figure 2 Carrier concentration c_{Hall} at room temperature versus CoSi₂ content in FeSi₂-CoSi₂.

at least 8 mol % CoSi₂ (in our case the upper limit for Hall voltage measurements) the number of free charge carriers, which is proportional to the number of dissolved cobalt atoms, increases with increasing cobalt content. In our opinion the position of the minimum in κ arises because above 6 mol % CoSi₂ the electronic part κ_e of the thermal conductivity increases more strongly with increasing CoSi₂ content than the lattice part κ_1 decreases. This behaviour is illustrated schematically in fig. 3 together with experimental data.

Figure 3 Thermal conductivity κ at room temperature versus CoSi₂ content in FeSi₂-CoSi₂ (open circles from [1]).

© 1970 Chapman and Hall Ltd.

We shall now discuss briefly the sign of the observed change in one of the lattice constants. Since the atomic radius of cobalt is about 2%smaller than that of iron, a lattice contraction was expected with increasing x in $Fe_{1-x}Co_xSi_2$ and not a dilatation, as observed. Similar results were found for germanium in copper [7, 8]. If however interstitial sites were occupied in β -FeSi₂ one could perhaps explain the observed change. The dilatation of the longest axis in β -FeSi₂ supports this argument. But an electronic effect could also be responsible for the observed increase of the a-axis. Unfortunately, the atomic positions in β -FeSi₂ are still unknown [5, 9], preventing a more exact analysis. For the same reason it is unknown why both the b- and the c-axis are unaffected by alloying. As previously reported [10], the determination of these atomic positions is also desirable for a better understanding of the lamellar structure of the β -phase.

References

1. R. M. WARE and D. J. MCNEILL, Proc. IEE 111 (1964) 178.

- 2. J. HESSE, Z. Metallk. 60 (1969) 652.
- 3. U. BIRKHOLZ and J. SCHELM, *Phys. Stat. Sol.* 34 (1969) K177.
- 4. U. BIRKHOLZ and A. FRUEHAUF, *ibid* 34 (1969) K181.
- 5. R. BUCKSCH, Z. Naturforsch. 22a (1967) 2124.
- 6. A. WITTMANN, K. O. BURGER, and H. NOWOTNY, Monatsh. Chemie 92 (1961) 961.
- 7. W. HUME-ROTHERY, G. F. LEWIN, and P. W. REYNOLDS, *Proc. Roy. Soc.* A157 (1936) 167.
- 8. E. A. OWEN and E. W. ROBERTS, *Phil. Mag.* 27 (1939) 294.
- 9. R. WANDJI, Y. DUSAUSOY, J. PROTAS, and B. ROQUES, Compt. rend. 267 (1968) 1587.
- 10. H. MATTHES, D. BIALAS, and J. HESSE, J. Mater. Sci. 5 (1970) 181.
- 15 December 1969

R. BUCKSCH AEG-Telefunken Forschungsinstitut Frankfurt am Main, Germany

J. HESSE